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The setup

• We will consider the estimation of a production function of the form

θ
c
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where the elasticity of substitution is σ = 1
1−ρ

, ρ < 1

• We will start with the assumption that E (ηc
it |θi ) = 0

• We will take the case where there are at least three measurements per
factor

• We will start with all measurements being continuous



The measurement system

• As before we assume that we possess a set of measurements
(demeaned) such that

mj
iks = ajksθ

j
iks + ε

j
iks

• With enough measurements it is possible to allow for some
measurements to reflect more than one factor but we leave this for now.

• Assuming measurement errors are independent of the factors and of
each other we can estimate the factor loadings, subject to the suitable
normalization restrictions

• Rescaling the measurements mj
iks/a

j
ks we are now ready to apply the

Kotlarski theorem
• As we know the theorem states that we can identify the joint

distribution of the θ and the ε nonparametrically



Implementing the approach
The following material has been developed with Emily Nix

• I now describe a flexible parametric approach making the problem
simpler

• I assume that the measurement errors are ε ∼ N(0,Ω), with Ω diagonal
• Now the next step is to assume a flexible parametric form for the

distribution of the factors g(θ)

• If we assume normality we will be imposing linearity (ρ = 1)
• We thus assume

g(θ) = λ f1(θ |µ1,Σ1) + (1−λ )f2(θ |µ2,Σ2) 0≤ λ ≤ 0.5

where fk(µk ,Σk) is the normal distribution with mean µk and
covariance matrix Σk

• Note the identification (and inference problem) when λ = 0.



Normalizations
Agostinelli and Wiswall

• Usually it is irrelevant whether we set the mean of the log factors to
zero or not

• However, when there are dynamics over more than one period this may
cause bias in the substitution elasticity

• Moreover it is interesting to follow the developmental growth of
children

• If the same test is being administered every time this is an easy problem
to solve

1 Assume that the mean of the measurement remains invariant across age
2 Then any growth of the measurement is due to the growth of the factor
3 This identifies the mean at each age

• Also observing one of the measures at all ages, allows us to keep the
scale the same from period to period



Implementing the approach

• With this assumption it means that the measurements also follow a
mixture of normals

• Each component of the mixture is

pk(m) =

ˆ
fε (ε)fk(θ |µk ,Σk)dθ k = 1,2

where εi = mi −a′θi and

p(m) = λp1(m) + (1−λ )p2(m)

• In what follows we write the measurement equations in stacked form
(having removed means)

mi = A′θi + εi

with A being nm×nf and nm is the total number of measurements and
nf is the number of factors



Implementing the approach

• Specifically each component is

pj (m) = 1
(2π)k/2|A′ΣjA+Ω|1/2 exp[−0.5(mi −A′µj )

′(A′ΣjA+ Ω)−1(mi −A′µj )

• We can thus obtain a likelihood function for the observables

logLi = log [λL1
i + (1−λ )L2

i ]

with the sample likelihood being logL = ∑
N
i=1 logLi



Comments

• This is a typical mixtures likelihood function exactly like the one we
find when we integrate unobserved heterogeneity from economic
models

• We can generalize this for greater flexibility by adding elements to the
mixture

• Indeed we know we can do this because the distribution of the factors is
nonparametrically identified

• So we can view this process as a nonparametric procedure
• We still have a very restrictive process for measurement error



Implementing the approach: The EM
algorithm

• An effective way of maximizing this likelihood is to use the EM
algorithm. The key references are

• Dempster, A. P., N. M. Laird, and D. B. Rubin (1977): “Maximum
Likelihood from Incomplete Data via the EM Algorithm,” Journal of
the Royal Statistical Society, B, 39, 1–38.

• Peter Arcidiacono and John Bailey Jones (2003) Finite Mixture
Distributions, Sequential Likelihood and the EM algorithm,
Econometrica, Vol. 71, No. 3 (May, 2003), 933–946

• The key idea is to use Bayes theorem to create a sequential algorithm.
The notes below draw from Arcidiacono and Jones



The conditional probability of a type

• Think of λk as being the probability of being a particular type k .
• Consider first the following relationship:

λkpk(mi |β ) = pr(k |mi ,β )f (mi |β )

where f (mi |β )≡ Li is the marginal distribution of the measurements
and where pr(k|mi ) is the probability of type being k given we observe
data mi and β are the unknown parameters (either type specific or
common) .

• Hence

pr(k |mi , β ) =
λkpk(mi |βk)

f (mi |β )



The first order conditions

• Now consider the first order conditions for a generalized version of our
loglikelihood: ΣN

i=1logLi = log
[
ΣK
k=1λkpk(mi |β )

]

∂ loLi
∂β

= ΣN
i=1

[
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λkpk
Lipk
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]
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i=1

[
Σkpr(k |mi ,β )

∂ logpk(mi |β )

∂β

]
= 0

In the above we have multiplied and divided by pk to get the log derivative.
• Now consider the following sequential algorithm:

1 Initialize parameters
2 Compute pr(k|mi , β ) for each observation (expectation step)
3 Solve first order conditions conditional on pr(k|mi , β ).
4 Estimate λ̂k = 1

N ΣN
i=1pr(k|mi , β̂ )

5 Go to 2 and start again with the updated parameters - continue until
convergence



Binary / Discrete measurements
• Suppose a subset of measurements are discrete.
• We then think of the measurement system as a latent itself. For example

we think of the binary variable yi = 1(mi > 0)

• Then set up the likelihood in terms of the underlying continuous latent
measures and then integrate over the relevant range.

• Hence the likelihood for observation i becomes

logLi = log [

ˆ
R

(
λL1

i + (1−λ )L2
i

)
dmd ]

where md denotes those measurements that are discrete and over which
we are integrating and R denotes the appropriate range for m. For
example if for that observation the binary variable was 1 then the
appropriate range of m is m > 0.

• Note that with many discrete measurements this can be come a high
dimensional integral, which can be very slow to compute.

• Also note that we need to put the intercepts back in place - we cannot
preestimate them.



Identifying the Production function

• Once we have estimated the joint distribution of factors we can now
estimate the production function

• One approach may be to draw a large random sample of factors from
the joint distribution and then use nonlinear least squares to fit the
conditional mean

• We can then use the parametric bootstrap (drawing parameters from the
asymptotic distribution of the factor model) to estimate the standard
errors.
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Endogeneity
The time invariant case

• The production function we are estimating is
θ c
it+1 = [γc1 (θ c

it)
ρ + γc2 (θN

it )ρ + γc3 (θ I
it)

ρ ]
1
ρ + ηc

it

• The issue of endogeneity arises at this point, when we need to define
the conditional distribution of the output given the inputs

• More generally the error η may be nonseparable: for example
θ c
it+1 = [γc1 (θ c

it)
ρ + γc2 (θN

it )ρ + γc3 (θ I
it)

ρ + ηc
it ]

1
ρ



Endogeneity
The time invariant case

• Now suppose that ηc
it = π +ucit with u being independent of all factors

• Suppose we have at least three adult outcomes mA. We suppose they
have measurement equations

mA
ik = aAk θ

c
it+1 + δπ + ε

c
ilt

• Then we need to identify an additional factor π . If there is a
non-cognitive skill production function we would add the non-cognitive
factor as well in the measurement equations.

• Effectively we need to find some measurement that reflects the omitted
factor. In CHS the idea is that nothing in childhood reveals that but it
“surfaces” directly in adult measurements.



Identification and Endogenous Investments

• The basic premise of the model is that all relevant heterogeneity is
captured by the included factors

• It is thus important to make sure the specification is complete
• Beyond the issue of permanent omitted variables there is the question

of temporal shocks
• Investments may respond to shocks:

• A positive shock to child cognition may lead to more or less investment
depending on complementarities and the structure of preferences

• Thus we also control for the possible correlation between TFP shocks
and investment



Controlling for endogenous investments

• We view investments as being chosen as a function of child background
and the economic environment

• Excluded instruments:
• household wealth
• Marital status
• Male and female community level wages

• We also include all predetermined variables used in the production
function.



Econometric approach to endogeneity

• We assume

lnθIt = βc lnθc t + βhlnθht + βmc lnθmc t + βmhlnθmht + β
′
IZt + vt

where Z are the instruments
• The production function takes the form

lnθc t+1 = a+ ln[δcθ
ρ

c t + δhθ
ρ

ht + δmcθ
ρ

mc t + δmhθ
ρ

mht + δIθ
ρ

It + δTθ
ρ

Tt ]
1
ρ

+β ′x + δ1vI + δ2vT +u∗t

• The measurements will now include the instruments as factors
measured with no error.

• Once the investment equation is estimated we then include the residual
in the production function as an extra regression

• This is a control function approach.
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The Young Lives Survey

• The Young Lives Survey surveyed two cohorts of children over
numerous periods of their childhood.

• It covers India, Vietnam, Peru and Ethiopia - We use data from India.
• There are two cohorts: One was first surveyed when the children were 1

and the other when they were 8.
• We use the young cohort. This is observed at ages 1, 5, 8 and 12



Descriptive Statistics

Household Characteristics

Subject child is Male 0.54
Urban 0.24
Scheduled caste 0.18
Scheduled tribe 0.15
Hindu 0.88
Muslim 0.07
Number of children 1.89

1.00
Number older siblings 0.69

1.03
Household size 5.44

2.36

Mother Characteristics

Mother weight 46.39
9.39

Mother years of school 3.62
4.42

Mother’s age 23.66
4.35

Observations 1,910
Note: Standard deviations in italics.



Descriptives Across Waves
Age 1 Age 5 Age 8 Age 12

Child Characteristics
Fraction stunted 0.31 0.36 0.30 0.29
Fraction underweight 0.32 0.45 0.46
Fraction wasted 0.19 0.28 0.33
Height for age Z-score -1.30 -1.66 -1.45 -1.45

1.48 0.99 1.04 1.03
Raw score PPVT test 27.47 58.51 43.08

21.10 30.43 7.82
Amount spent on books 3.48 8.98 13.00

5.40 13.02 16.97
Household Economic Wellbeing
Annual income 873.57 1407.98 1749.95

1219.24 2033.67 1841.78
Wealth index 0.40 0.46 0.51 0.59

0.20 0.20 0.18 0.17
Percent below $2/day 0.63 0.45 0.27
Child Work
Daily hours chores 0.06 0.34 0.82
Daily hours family business 0.00 0.01 0.12
Daily hours paid work 0.01 0.05

Income and amount spent on books are annual amounts in the past 12 months in USD. At age 5, 1USD∼=45INR, at
age 8, 1USD∼=49INR, and at age 12, 1USD∼=62INR.



Wealth Gradients

Figure: Wealth Gradient in Height and in the Peabody Picture Vocabulary
Test(PPVT)

Height Z-Score PPVT

• Year 12 PPVT is wrong in this graph



Model

θ
c
t+1 = G

(
θ
c
t , θ

h
t , θ

I
t , Xt

)
θ
h
t+1 = F

(
θ
c
t , θ

h
t , θ

I
t , Xt

)
θct+1 =

[
δct(θct)

ρt + δht(θht)
ρt + δcpt(θcp)ρt + δhpt(θhp)ρt + δIt(θIt)

ρt
] 1
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ζt + αht(θht)
ζt + αcpt(θcp)ζt + αhpt(θhp)ζt + αIt(θIt)
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where

Act = exp (δ0t + δXtXt +uct)

Aht = exp (α0t + αXtXt +uht)

lnθIt = γ0 +γct lnθct +γht lnθht +γcpt lnθcp +γhpt lnθhp +γ
′
XtXt +γ

′
pt lnpIt +γY lnθYt +vt

(1)
where vt reflects random shocks, and θYt represents parental resources,
lnpIt represents log prices for child investment goods. All other
variables are as defined in the production functions.



Controlling for the endogeneity of
Investments

E (uct |Qt ,Zt) = κcvt

E (uht |Qt ,Zt) = κhvt



Signoal to noise ratio

s
lnθkt
j =

(λjkt)
2 Var(lnθkt)

(λjkt)2 Var(lnθkt) +Var(εjkt)



The information content of measures
Age 1 Age 5 Age 8 Age 12

Child Cognition
PPVT 51% 33% 39%
Math 74% 68%
English 64%
Language 50%
EGRA (rasch) 52%
CDA (rasch) 36%

Child Health
Height Z-Score 55% 72% 60% 60%
Weight Z-Score 81% 73% 77%
Weight in kg 64%
Health Status 8% 1% 5%

Investments
Books 22% 21% 30%
Clothing 38% 31% 44%
Shoes 43% 38% 30%
Uniform 11% 15% 19%
Meals/day 2% 5% 2%
Food groups/day 7% 6% 1%

Resources
Income 69% 84% 82%
Wealth 38% 49% 49%

Parental Cognition (fixed over age)
Mother’s education 79%
Father’s education 55%
Literacy 40%

Parental Health (fixed over age)
Mother’s weight 73%
Mother’s height 11%

PPVT: Peabody Picture Vocabulary Test, EGRA: Reading comprehension test, CDA: Cognitive Develop-
ment Assessment. Books, clothing, shoes and uniform measured in monetary units.



Table: The Coefficients of the Investment Equations

Age 5 Age 8 Age 12
Child human capital

Cognition 0.113
[0.03,0.17]

0.09
[−0.01,0.13]

Health 0.095
[0.05,0.13]

0.012
[−0.01,0.07]

0.051
[0,0.13]

Gender −0.013
[−0.1,0.04]

−0.026
[−0.12,0.05]

0.056
[−0.04,0.16]

Parental human capital
Parental Cognition 0.01

[−0.06,0.07]
0.004

[−0.02,0.1]
−0.02

[−0.05,0.04]

Parental Health −0.013
[−0.05,0.04]

−0.01
[−0.06,0.03]

−0.032
[−0.11,0.01]



Table: The Coefficients of the Investment Equations

Age 5 Age 8 Age 12
Prices

Price Clothes −0.063
[−0.15,0.02]

0.031
[−0.12,0.11]

0.099
[−0.02,0.23]

Price Notebook −0.383
[−0.53,−0.23]

−0.196
[−0.37,−0.05]

−0.231
[−0.34,−0.13]

Price Mebendazol 0.047
[0.01,0.1]

−0.156
[−0.26,−0.11]

0.011
[−0.04,0.05]

Price Food −0.082
[−0.28,0.2]

−0.328
[−0.66,0.04]

−0.256
[−0.47,−0.09]

Household Characteristics
Resources 0.457

[0.3,0.59]
0.644

[0.42,0.75]
0.587

[0.41,0.68]

Older Siblings 0.039
[−0.02,0.1]

0.058
[−0.01,0.11]

−0.032
[−0.09,0.03]

Number of Children −0.096
[−0.14,−0.04]

−0.041
[−0.09,0.01]

−0.049
[−0.11,0.01]

Urban 0.349
[0.2,0.54]

0.103
[0,0.28]

0.066
[−0.09,0.23]

Hindu −0.005
[−0.02,0.01]

−0.01
[−0.02,0.01]

0
[−0.01,0.01]

Muslim −0.105
[−0.33,0.07]

−0.247
[−0.4,−0.05]

−0.02
[−0.27,0.15]

Mother’s Age 0.014
[−0.12,0.14]

−0.141
[−0.26,0.08]

0.016
[−0.1,0.2]

Scheduled Caste −0.074
[−0.17,0.05]

−0.066
[−0.21,0.1]

−0.269
[−0.42,−0.11]

Scheduled Tribe 0.073
[−0.05,0.2]

−0.106
[−0.23,0.05]

−0.254
[−0.4,−0.1]

BC Caste −0.034
[−0.15,0.08]

0.061
[−0.06,0.22]

−0.169
[−0.3,−0.05]

Prices and Income (P-values) 0 0 0
Prices (P-values) 0 .005 .001



Production of Cognitive Skills and Health

Cognition Health
Age 5 8 12 5 8 12

Lagged Skills

Cognition 0.29
[0.22,0.43]

0.6
[0.53,0.67]

−0.02
[−0.07,0.01]

−0.03
[−0.06,0.03]

Health 0.18
[0.11,0.25]

0.15
[0.1,0.19]

0.02
[−0.01,0.07]

0.69
[0.64,0.75]

0.82
[0.76,0.87]

0.92
[0.85,0.98]

Investment and Parental Skills

Investment 0.47
[0.31,0.56]

0.65
[0.47,0.75]

0.19
[0.07,0.29]

0.1
[0.01,0.2]

0.12
[0.06,0.21]

0.04
[−0.06,0.1]

Parent Cog 0.32
[0.25,0.39]

−0.01
[−0.1,0.06]

0.17
[0.13,0.21]

0.01
[−0.05,0.06]

0.03
[0,0.07]

0.04
[−0.01,0.06]

Parent Health 0.03
[−0.02,0.1]

−0.09
[−0.14,−0.02]

0.03
[0,0.07]

0.2
[0.15,0.28]

0.05
[0.02,0.08]

0.04
[0.02,0.09]



Production of Cognitive Skills and Health
Cognition Health

Age 5 8 12 5 8 12

Demographic Characteristics

Num Child 0
[−0.02,0.01]

−0.01
[−0.03,0.02]

−0.03
[−0.05,−0.01]

0.01
[−0.01,0.02]

0
[−0.02,0]

0
[−0.01,0.01]

Older Sibs 0.01
[−0.01,0.03]

−0.01
[−0.03,0]

0
[−0.01,0.02]

−0.03
[−0.05,−0.01]

0
[−0.01,0.01]

0.01
[0,0.02]

Gender 0.01
[−0.01,0.02]

0.04
[0.02,0.05]

−0.01
[−0.02,0]

0
[−0.01,0.01]

0.01
[−0.01,0.01]

0.02
[0.01,0.02]

Urban −0.01
[−0.01,0]

−0.03
[−0.03,−0.01]

−0.01
[−0.02,0]

0
[−0.01,0]

0.01
[0,0.01]

0
[−0.01,0]

Hindu −0.01
[−0.03,0]

−0.01
[−0.03,0.01]

0.03
[0.02,0.05]

0.01
[−0.01,0.02]

0
[−0.01,0]

0
[−0.01,0.01]

Muslim 0
[0,0]

0
[0,0]

−0.01
[−0.01,0]

0
[0,0]

0
[0,0]

0
[0,0]

Mother Age 0.01
[0,0.03]

0.01
[0,0.03]

−0.01
[−0.02,0.01]

0
[−0.01,0.02]

0
[−0.01,0.01]

−0.02
[−0.02,0]

Sched Caste 0
[−0.02,0]

0.02
[0.01,0.03]

0.01
[0,0.02]

0
[−0.01,0.01]

0
[−0.01,0]

0
[−0.01,0.01]

Sched Tribe 0.06
[0.04,0.08]

−0.01
[−0.02,−0.01]

−0.01
[−0.01,0]

0.01
[0.01,0.02]

−0.01
[−0.02,−0.01]

0
[0,0.01]

BC Caste −0.02
[−0.04,−0.01]

0
[−0.01,0.02]

0
[−0.01,0.01]

−0.02
[−0.03,−0.01]

0.01
[0,0.02]

0
[−0.01,0]

Production function structure and test of exogeneity for investment

(ρ , ζ ) −0.11
[−0.37,−0.01]

−0.06
[−0.19,0.07]

0.28
[0,0.35]

−0.03
[−0.22,0.03]

0.23
[0.05,0.36]

−0.2
[−0.2,0.18]

Subst. Elast 0.9
[0.73,0.99]

0.95
[0.84,1.07]

1.39
[1,1.54]

0.97
[0.82,1.04]

1.31
[1.05,1.56]

0.83
[0.83,1.23]

Log TFP −0.03
[−0.09,0.04]

0.03
[−0.06,0.05]

0.03
[−0.03,0.07]

0.03
[0,0.08]

−0.02
[−0.04,0.03]

0
[−0.03,0.02]

Inv. Res −0.39
[−0.54,−0.12]

−0.77
[−0.9,−0.53]

−0.21
[−0.31,−0.05]

−0.08
[−0.24,0.08]

−0.06
[−0.17,0.06]

0.01
[−0.1,0.1]



Marginal Produt of Investment

Figure: Marginal Product of Investment on Health and Cognition
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Note: The y-axis represents the impact on the outcome in question, in standard deviation units, of
increasing cognition or health by one standard deviation.
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